Dark Multi-Soliton Solution of the Nonlinear Schrödinger Equation with Non-Vanishing Boundary

Hao Cai,^{1,2} Feng-Ming Liu,¹ and Nian-Ning Huang¹

Received August 2, 2004; accepted November 24, 2004

The inverse scattering transform for the nonlinear Schrödinger equation in normal dispersion with non-vanishing boundary values is re-examined using an affine parameter to avoid double-valued functions. An operable algebraic procedure is developed to evaluate dark multi-soliton solutions. The dark two-soliton solution is given explicitly as an example, and is verified by direct substitution. The additional motion of the soliton center is given by its asymptotic behavior.

KEY WORDS: dark soliton; nonlinear equation; multi-soliton solution.

1. INTRODUCTION

The nonlinear Schrödinger equation in normal dispersion with non-vanishing boundary (simply NLS⁺ equation) was solved by Zakharov and Sabat (1973), and a particular type of solution called dark soliton solution was obtained. While the single dark soliton solution was already given explicitly, the attempt to find the expression of multi-soliton solution was too onerous to be done (Zakharov and Shabat, 1972; Faddeev and Takhtajan, 1987). But the accurate expression of dark multi-soliton solution are basic to construct a general perturbation theory for dark solitons (Keener and McLaughlin, 1977; Kivshar and Malomad, 1989; Kaup and Newell, 1978; Huang *et al.*, 1999; Chen *et al.*, 1998). In the work of Zakharov and Sabat (1973), an affine parameter ζ was introduced as an auxiliary parameter to avoid double-valued function of original parameter and simplify the evaluation. The following theory should be developed in this way.

In this work, a systematic procedure is proposed to evaluate the dark multisoliton solutions based upon the well-known linear algebraic formulae. And the dark two-soliton solution is given explicitly and the result is finally verified by

255

¹ Department of Physics, Wuhan University, Wuhan, People's Republic of China.

² To whom correspondence should be addressed at Department of Physics, Wuhan University, Wuhan 430072, People's Republic of China; e-mail: caihao2001@hotmail.com.

direct substitution. At the end of this work, the asymptotic behavior of this twosoliton solution is given and the effect between the two solitons composing this solution is found.

2. PRELIMINARY

The NLS⁺ equation can be written as

$$iu_t - u_{xx} + 2(|u|^2 - \rho^2)u = 0$$
⁽¹⁾

with non-vanishing boundary conditions:

$$\begin{cases} u \to \rho & \text{as } x \to -\infty \\ u \to \rho e^{i\alpha} & \text{as } x \to \infty \end{cases}$$
(2)

where ρ is a positive constant. And its Lax pair is given by

$$L = -i\lambda\sigma_3 + U, \qquad U = \begin{pmatrix} 0 & u \\ \bar{u} & 0 \end{pmatrix}$$
(3)

and

$$M = i2\lambda^2\sigma_3 - 2\lambda U + i(U^2 - \rho^2 + U_x)\sigma_3$$
(4)

In the limit of $x \to \infty$, the *L* tends to

$$L_{+} = -i\lambda\sigma_{3} + U_{+} \tag{5}$$

where $U_{+} = \rho \sigma_{1}$, and the corresponding free Jost solution is

$$E_{+}(x,\zeta) = (I + \rho\zeta^{-1}\sigma_2)e^{-i\kappa x}$$
(6)

where an auxiliary parameter ζ is introduced to avoid double-valued functions

$$\lambda = \frac{1}{2}(\zeta + \rho^2 \zeta^{-1}), \qquad \kappa = \frac{1}{2}(\zeta - \rho^2 \zeta^{-1})$$
(7)

In the limit of $x \to -\infty$, the *L* tends to

$$L_{-} = -i\lambda\sigma_{3} + U_{-} \tag{8}$$

where

$$U_{-} = Q(\alpha)U_{+}Q^{-1}(\alpha), \qquad Q(\alpha) = e^{-i\frac{1}{2}\alpha\sigma_{3}}$$
 (9)

and the corresponding free Jost solution is

$$E_{-} = Q^{-1}(\alpha)E(x,\zeta) \tag{10}$$

Then the Jost solutions are defined as

$$\Psi(x,\zeta) = (\tilde{\psi}(x,\zeta), \quad \psi(x,\zeta)) \to E_+(x,\zeta), \quad \text{as } x \to \infty$$
(11)

$$\Phi(x,\zeta) = (\phi(x,\zeta), \quad \tilde{\phi}(x,\zeta)) \to E_{-}(x,\zeta), \quad \text{as } x \to -\infty$$
(12)

As usual, the monodramy matrix $T(\zeta)$ is introduced

$$\Phi(x,\zeta) = \Psi(x,\zeta)T(\zeta), \qquad T(\zeta) = \begin{pmatrix} a(\zeta) & \tilde{b}(\zeta) \\ b(\zeta) & \tilde{a}(\zeta) \end{pmatrix}$$
(13)

Since

$$\kappa > 0$$
 if and only if $\operatorname{Im} \zeta > 0$ (14)

 $\psi(x, \zeta)$, $\phi(x, \zeta)$ and $a(\zeta)$ are analytic in the upper half plane of complex ζ ; $\tilde{\psi}(x, \zeta)$, $\tilde{\phi}(x, \zeta)$ and $\tilde{a}(\zeta)$ are analytic in the lower half plane of complex ζ . Usually $b(\zeta)$ and $\tilde{b}(\zeta)$ cannot be analytically continued outside the real axis.

The Jost solutions in NLS⁺ equation have some properties, such as

$$\tilde{\psi}(x,\bar{\zeta}) = \sigma_1 \overline{\phi(x,\zeta)}, \qquad \tilde{\phi}(x,\bar{\zeta}) = \sigma_1 \overline{\phi(x,\zeta)}$$
 (15)

and

$$\tilde{a}(\bar{\zeta}) = \overline{a(\zeta)}, \qquad \tilde{b}(\zeta) = \overline{b(\zeta)}$$
 (16)

As a single value of λ results two values of ζ , there are $\lambda \to \lambda$ and $\kappa \to -\kappa$ under the so-called reduction transformation $\zeta \to \rho^2 \zeta^{-1}$. Since $Q(\alpha)$ is un-effected by such a transformation, the Jost solutions have the following properties

$$\tilde{\psi}(x,\rho^2\zeta^{-1}) = i\rho^{-1}\zeta\psi(x,\zeta), \qquad \tilde{\phi}(x,\rho^2\zeta^{-1}) = -i\rho^{-1}\zeta\phi(x,\zeta)$$
(17)

We thus compare

$$\phi(x,\zeta) = \tilde{\psi}(x,\zeta)a(\zeta) + \psi(x,\zeta)b(\zeta),$$

$$\tilde{\phi}(x,\zeta) = \tilde{\psi}(x,\zeta)\tilde{b}(\zeta) + \psi(x,\zeta)\tilde{a}(\zeta)$$
(18)

and

$$\phi(x, \rho^2 \zeta^{-1}) = \tilde{\psi}(x, \rho^2 \zeta^{-1}) a(\rho^2 \zeta^{-1}) + \psi(x, \rho^2 \zeta^{-1}) b(\rho^2 \zeta^{-1})$$
$$\tilde{\phi}(x, \rho^2 \zeta^{-1}) = \tilde{\psi}(x, \rho^2 \zeta^{-1}) \tilde{b}(\rho^2 \zeta^{-1}) + \psi(x, \rho^2 \zeta^{-1}) \tilde{a}(\rho^2 \zeta^{-1})$$
(19)

using (17) and the definition of $T(\zeta)$ in (13), and then obtain

$$\tilde{a}(\rho^2 \zeta^{-1}) = a(\zeta), \qquad \tilde{b}(\rho^2 \zeta^{-1}) = -b(\zeta)$$
 (20)

The last ones of Equations (15) and (20) are valid only for real ζ .

The first one of Lax equations can be rewritten in the form

$$\hat{L}\Psi(x,\zeta) = \lambda\Psi(x,\zeta), \qquad \hat{L} = i\sigma_3\partial_x - i\sigma_3U$$
 (21)

Since \hat{L} is Hermitian operator, its eigenvalue λ must be real. From the relationship between ζ and λ , the discreet value ζ_n must be located on a upper half circle with radius ρ centered at the origin, that is

$$\zeta_n = \rho e^{i\beta_n}, \qquad 0 < \beta_n < \pi \tag{22}$$

And one should see that

$$\bar{\zeta}_n = \rho^2 \zeta_n^{-1} \tag{23}$$

The discreet spectrum part of $a(\zeta)$ is

$$a(\zeta) = e^{i\frac{1}{2}\alpha} \prod_{n=1}^{N} \frac{\zeta - \zeta_n}{\zeta - \overline{\zeta}_n}$$
(24)

where $\alpha = -2 \sum_{n=1}^{N} \beta_n$. At zeros of $a(\zeta)$, and of $\tilde{a}(\zeta)$, there are

$$\phi(x,\zeta_n) = b_n \psi(x,\zeta_n), \qquad \tilde{\phi}(x,\bar{\zeta}_m) = \tilde{b}_m \tilde{\psi}(x,\bar{\zeta}_m)$$
(25)

where $b_n = b(\zeta_n)$ and $\tilde{b}_m = \tilde{b}(\zeta_m)$, and then

$$c_n \equiv -\frac{b_n}{\dot{a}(\zeta_n)\zeta_n} > 0 \tag{26}$$

which should be indicated in Appendix A.

The inverse scattering transform in the reflectionless case is

$$\tilde{\psi}(x,t,\zeta) = \left\{ \begin{pmatrix} 1\\ i\rho\zeta^{-1} \end{pmatrix} - \sum_{n} \frac{1}{\zeta - \zeta_{n}} c_{n}\zeta_{n}\psi(x,t,\zeta_{n})e^{i\kappa_{n}x} \right\} e^{-i\kappa x}$$
(27)

and the dark soliton solution is

$$\overline{u(x,t)} = \rho \left\{ 1 + \sum_{n} i c_n \rho^{-1} \zeta_n \psi_2(x,\zeta_n) e^{i\kappa_n x} \right\}$$
(28)

in which the time dependence relation derived from the second Lax equation of (3) is included, that is

$$b_n(t) = b_n(0)e^{-i4\kappa_n\lambda_n t}, \qquad c_n(t) = c_n(0)e^{-i4\kappa_n\lambda_n t}, \qquad r(t,\zeta) = r(0,\zeta)e^{-i4\kappa\lambda t}$$
(29)

3. DERIVATION OF MULTI-SOLITON SOLUTION BY SIMPLE ALGEBRAIC CALCULATION

Setting $\zeta = \overline{\zeta}_m$ in Equation (27) and then considering (17), we have

$$i\rho^{-1}\zeta_m\psi_2(x,\zeta_m) = i\rho^{-1}\zeta_m e^{i\kappa_m x} - \sum_n \frac{1}{\bar{\zeta}_m - \zeta_n} c_n\zeta_n\psi(x,t,\zeta_n)e^{i(\kappa_n + \kappa_m)x}$$
(30)

Introducing

$$\Psi_n = i\sqrt{c_n}\rho^{-1}\zeta_n\psi_2(x,\zeta_n), \qquad f_n = \sqrt{c_n}e^{i\kappa_n x}, \qquad g_n = i\rho^{-1}\zeta_n f_n \qquad (31)$$

Equation (30) is rewritten in the matrix form

$$\Psi = g - \Psi B, \qquad \Psi(\Psi_1, \Psi_2, \dots, \Psi_N), \qquad g = (g_1, g_2, \dots, g_N)$$
(32)

Nonlinear Schrödinger Equation

and

$$B_{nm} = f_n \frac{\rho}{i(\bar{\zeta}_m - \zeta_n)} f_m \tag{33}$$

Then Equation (28) turns to

$$\bar{u} = \rho \{1 + \Psi f^T\} \tag{34}$$

Since

$$\Psi f^{T} = g(I+B)^{-1} f^{T} = \frac{\det(I+B+f^{T}g)}{\det(I+B)} - 1$$
(35)

there is

$$\bar{u} = \rho \frac{\det(I+B')}{\det(I+B)}$$
(36)

in which

$$B' = B + f^{T}g, \qquad B'_{nm} = B_{nm} + f_{n}g_{m} = f_{n}\frac{\rho^{-1}}{i(\zeta_{n} - \bar{\zeta}_{m})}\zeta_{n}\zeta_{m}f_{m}$$
(37)

Because

$$\det(I+B) = 1 + \sum_{r=1}^{N} \sum_{1 \le n_1 < n_2 < \dots < n_r \le N} B(n_1, n_2, \dots, n_r)$$
(38)

where $B(n_1, n_2, ..., n_r)$ are principal minors, it is easily found

$$B(n_1, n_2, \dots, n_r) = \prod_{m,n} f_n^2 [i(\bar{\zeta}_m - \zeta_n)]^{-1} \prod_{n < m} [i(\bar{\zeta}_m - \bar{\zeta}_n)] [i(\zeta_m - \zeta_n)] \rho^r \quad (39)$$

where $n, m \in \{n_1, n_2, \dots, n_r\}$, and then there is

$$B(n_1, n_2, \dots, n_r) = \prod_n \frac{\rho}{i(\bar{\zeta}_n - \zeta_n)} f_n^2 \prod_{n < m} \left| \frac{\zeta_n - \zeta_m}{\bar{\zeta}_n - \zeta_m} \right|^2$$
(40)

Similarly, we can obtain the explicit expression of det(I + B')

$$\det(I+B') = 1 + \sum_{r=1}^{N} \sum_{1 \le n_1 < n_2 < \dots < n_r \le N} B'(n_1, n_2, \dots, n_r)$$
(41)

where $B'(n_1, n_2, ..., n_r)$ are principal minors,

$$B'(n_1, n_2, \dots, n_r) = \prod_{m,n} f_n^2 \zeta_n^2 [i(\bar{\zeta}_m - \zeta_n)]^{-1} \prod_{n < m} [i(\bar{\zeta}_m - \bar{\zeta}_n)] [i(\zeta_m - \zeta_n)] \rho^{-r}$$
(42)

$$B'(n_1, n_2, \dots, n_r) = \prod_n \frac{\rho}{i(\bar{\zeta}_n - \zeta_n)} f_n^2 \rho^{-2} \zeta_n^2 \prod_{n < m} \left| \frac{\zeta_n - \zeta_m}{\bar{\zeta}_n - \zeta_m} \right|^2$$
(43)

where $\rho^{-2}\zeta_n^2 = e^{i2\beta_n}$ and $n, m \in \{n_1, n_2, \dots, n_r\}$. Substituting them into Equation (36), we finally obtain the expression of dark *N*-soliton solution.

4. EXPLICIT EXPRESSION OF DARK TWO-SOLITON SOLUTION

In the simplest case of N = 1, we have

$$\det(I+B) = 1 + i\rho f_1^2 \frac{1}{\zeta_1 - \bar{\zeta}_1}, \quad \det(I+B') = 1 + i\rho^{-1} f_1^2 \frac{1}{\zeta_1 - \bar{\zeta}_1} \zeta_1^2 \quad (44)$$

and then introduce h_1^2

$$f_1^2 = e^{i2\kappa_1 x} \frac{b_1}{\dot{a}(\zeta_1)\zeta_1} = h_1^2 \frac{\zeta_1 - \bar{\zeta}_1}{i\rho}$$
(45)

Since $\frac{\zeta_1 - \overline{\zeta}_1}{i\rho}$ is real, there is

$$h_1^2 = e^{-2\theta_1}, \qquad \theta_1 = k_1(x + 2\lambda_1 t) - k_1 x_1$$
 (46)

where $\kappa_1 = ik_1$, $\lambda_1 = \frac{1}{2}(\zeta_1 + \rho^2 \zeta_1^{-1})$ is real. Finally, we obtain

$$\bar{u}_1 = \rho \frac{\det(I+B')}{\det(I+B)} = \rho \frac{1+e^{-2\theta_1}e^{-i2\beta_1}}{1+e^{-2\theta_1}}$$
(47)

which is a well-known result and could be verified by direct substitution simply (Zakharov and Shabat, 1973).

For the dark two-soliton solution, i.e. N = 2, there is

$$\det(I+B) = 1 + i\rho \left\{ f_1^2 \frac{1}{\zeta_1 - \bar{\zeta}_1} + f_2^2 \frac{1}{\zeta_2 - \bar{\zeta}_2} \right\}$$
$$-\rho^2 f_1^2 f_2^2 \frac{(\zeta_1 - \zeta_2)(\bar{\zeta}_1 - \bar{\zeta}_2)}{(\zeta_1 - \bar{\zeta}_1)(\zeta_2 - \bar{\zeta}_2)(\zeta_1 - \bar{\zeta}_2)(\zeta_2 - \bar{\zeta}_1)}$$
(48)

Similarly, h_1^2 and h_2^2 are introduced as

$$f_1^2 = h_1^2 \frac{\zeta_2(\zeta_1 - \bar{\zeta}_1)(\zeta_1 - \bar{\zeta}_2)}{i(\zeta_1 - \zeta_2)\rho^2}, \qquad f_2^2 = h_2^2 \frac{\zeta_1(\zeta_2 - \bar{\zeta}_2)(\zeta_2 - \bar{\zeta}_1)}{i(\zeta_2 - \zeta_1)\rho^2}$$
(49)

where $\frac{\zeta_2(\zeta_1-\bar{\zeta}_1)(\zeta_1-\bar{\zeta}_2)}{i(\zeta_1-\zeta_2)\rho^2}$ and $\frac{\zeta_1(\zeta_2-\bar{\zeta}_2)(\zeta_2-\bar{\zeta}_1)}{i(\zeta_2-\zeta_1)\rho^2}$ are real. As a result, the last term of Equation (48) is

$$-\rho^2 f_1^2 f_2^2 \frac{(\zeta_1 - \zeta_2)(\bar{\zeta}_1 - \bar{\zeta}_2)}{(\zeta_1 - \bar{\zeta}_1)(\zeta_2 - \bar{\zeta}_2)(\zeta_1 - \bar{\zeta}_2)(\zeta_2 - \bar{\zeta}_1)} = h_1^2 h_2^2$$
(50)

260

or

Nonlinear Schrödinger Equation

The other two terms of Equation (41) are

$$i\rho f_1^2 \frac{1}{\zeta_1 - \bar{\zeta}_1} = h_1^2 \frac{\zeta_2}{\rho} \frac{(\zeta_1 - \bar{\zeta}_2)}{(\zeta_1 - \zeta_2)} = h_1^2 \left| \frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2} \right|$$
(51)

$$i\rho f_2^2 \frac{1}{\zeta_2 - \bar{\zeta}_2} = h_2^2 \frac{\zeta_1}{\rho} \frac{(\zeta_2 - \bar{\zeta}_1)}{(\zeta_2 - \zeta_1)} = h_2^2 \left| \frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2} \right|$$
(52)

Thus we have

$$\det(I+B) = 1 + (e^{-2\theta_1} + e^{-2\theta_2}) \left| \frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2} \right| + e^{-2(\theta_1 + \theta_2)}$$
(53)

Similarly,

$$\det(I+B') = 1 + (e^{-2\theta_1}e^{i2\beta_1} + e^{-2\theta_2}e^{i2\beta_2}) \left|\frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2}\right| + e^{-2(\theta_1 + \theta_2)}e^{i2(\beta_1 + \beta_2)}$$
(54)

Finally, a dark two-soliton solution is obtained by substituting all of them into Equation (36)

$$\bar{u}_{2} = \rho \frac{1 + (e^{-2\theta_{1}}e^{i2\beta_{1}} + e^{-2\theta_{2}}e^{i2\beta_{2}}) \left|\frac{\zeta_{1} - \bar{\zeta}_{2}}{\zeta_{1} - \zeta_{2}}\right| + e^{-2(\theta_{1} + \theta_{2})}e^{i2(\beta_{1} + \beta_{2})}}{1 + (e^{-2\theta_{1}} + e^{-2\theta_{2}}) \left|\frac{\zeta_{1} - \bar{\zeta}_{2}}{\zeta_{1} - \zeta_{2}}\right| + e^{-2(\theta_{1} + \theta_{2})}}$$
(55)

which has been verified by direct substitution. There is the Figure 1 about the dark two-soliton solutions, in which the parameters are chosen as $\rho = 1$, $\beta_1 = \frac{\pi}{4}$, $\beta_2 = \frac{3\pi}{4}$ and $x_1 = x_2 = 0$.

5. ASYMPTOTIC BEHAVIOR

For the dark two-soliton solution, noticing λ_n is real, one could require

$$\lambda_2 < \lambda_1 \tag{56}$$

which means that the soliton corresponding to λ_2 is moving slower than that corresponding to λ_1 . Due to Equation (22), there is then $0 < \beta_1 < \beta_2 < \pi$.

In order to find the effect from the faster-moving soliton on the slower-moving soliton, we discuss the neighborhood of the center of λ_2 -soliton $x = x_2 + 2\lambda_2 t$, and then, in the limit of $t \rightarrow \infty$, there is

$$x - x_1 - 2\lambda_1 t \to -\infty \tag{57}$$

Since $k_n > 0$, we have

$$\theta_1 \to -\infty, \qquad e^{-2\theta_1} \to \infty$$
 (58)

Fig. 1. The dark two-soliton solution of NLS⁺ equation with parameters $\rho = 1$, $\beta_1 = \frac{\pi}{4}$, $\beta_2 = \frac{3\pi}{4}$ and $x_1 = x_2 = 0$.

that is

$$u_{2} \simeq \rho \frac{e^{-2\theta_{1}} e^{-i2\beta_{1}} \left| \frac{\xi_{1} - \bar{\xi}_{2}}{\xi_{1} - \xi_{2}} \right| + e^{-2(\theta_{1} + \theta_{2})} e^{-i2(\beta_{1} + \beta_{2})}}{e^{-2\theta_{1}} \left| \frac{\xi_{1} - \bar{\xi}_{2}}{\xi_{1} - \xi_{2}} \right| + e^{-2(\theta_{1} + \theta_{2})}}$$
(59)

Introducing

$$\Delta_2 = \frac{1}{2k_2} \ln \left| \frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2} \right|$$
(60)

Equation (59) becomes

$$u_2 \cong \rho e^{-i2\beta_1} \frac{1 + e^{-2\theta_2^+} e^{-i2\beta_2}}{1 + e^{-2\theta_2^+}} \tag{61}$$

where

$$\theta_2^+ = \theta_2 + k_2 \Delta_2 = k_2 (x - x_2 - 2\lambda_2 t + \Delta_2)$$
(62)

On the other hand, in the limit of $t \to -\infty$, there is

$$x - x_1 - 2\lambda_1 t \to \infty, \qquad e^{-2\theta_1} \to 0$$
 (63)

Nonlinear Schrödinger Equation

and then

$$u_2 \cong \rho \frac{1 + e^{-2\theta_2^-} e^{-i2\beta_2}}{1 + e^{-2\theta_2^-}} \tag{64}$$

where

$$\theta_2^- = \theta_2 - k_2 \Delta_2 = k_2 (x - x_2 - 2\lambda_2 t - \Delta_2)$$
(65)

It should be noticed that (61) and (64) are similar to the expression of dark singlesoliton solution (47). Since discreet value of ζ_n must be located on a upper half circle with radius ρ centered at the origin shown as in (22), there is

- .

$$\left|\frac{\zeta_1 - \zeta_2}{\zeta_1 - \zeta_2}\right| > 1, \qquad \Delta_2 > 0$$
 (66)

which means the center of the slower-moving λ_2 -soliton moves additionally $2\Delta_2$ correspondingly to the faster-moving λ_1 -soliton.

With similar procedure, we should find that the center of λ_1 -soliton is also affected by λ_2 soliton. Introducing

$$\Delta_1 = \frac{1}{2k_1} \left| \frac{\zeta_1 - \bar{\zeta}_2}{\zeta_1 - \zeta_2} \right| > 0 \tag{67}$$

the center of λ_1 -soliton moves additionally $-2\Delta_1$ correspondingly to the slowermoving λ_2 -soliton.

ACKNOWLEDGMENTS

The project is supported by the National Science Foundation of China under Grant No. 10375041.

APPENDIX A

From Equation (13), we have

$$a(\zeta) = (1 - \rho^2 \zeta^{-2})^{-1} \det[\phi(x, \zeta), \psi(x, \zeta)]$$
(A.1)

and then

$$\left(1-\rho^2\zeta_n^{-2}\right)\dot{a}(\zeta_n) = \det[\dot{\phi}(x,\zeta_n),\psi(x,\zeta_n)] + \det[\phi(x,\zeta_n),\dot{\psi}(x,\zeta_n)] \quad (A.2)$$

noticing $\phi(x, \zeta_n) = b_n \psi(x, \zeta_n)$, that is

$$\left(1-\rho^2\zeta_n^{-2}\right)\dot{a}(\zeta_n)=b_n^{-1}\det[\dot{\phi}(x,\zeta_n),\phi(x,\zeta_n)]+b_n\det[\psi(x,\zeta_n),\dot{\psi}(x,\zeta_n)]$$
(A.3)

From the first Lax equation, there are

$$\partial_x \phi(x, \zeta_n) = [-i\lambda_n \sigma_3 + U]\phi(x, \zeta_n) \tag{A.4}$$

$$\partial_x \dot{\phi}(x, \zeta_n) = [-i\dot{\lambda}_n \sigma_3]\phi(x, \zeta_n) + [-i\lambda_n \sigma_3 + U]\dot{\phi}(x, \zeta_n)$$
(A.5)

where $\dot{\lambda}_n = \frac{\partial \lambda}{\partial \zeta}|_{\zeta = \zeta_n}$. As a result, it is not difficult to see that

$$\det[\dot{\phi}(x,\,\zeta_n)_x,\,\phi(x,\,\zeta_n)] + \det[\dot{\phi}(x,\,\zeta_n),\,\phi(x,\,\zeta_n)_x] = -i\dot{\lambda}_1 2\phi(x,\,\zeta_n)_1\phi(x,\,\zeta_n)_2$$
(A.6)

where $\phi(x, \zeta_n) = (\phi(x, \zeta_n)_1 \phi(x, \zeta_n)_2)^T$, that is

$$\det[\dot{\phi}(x,\zeta_n),\phi(x,\zeta_n)] = -i\dot{\lambda}_n 2 \int_{-\infty}^x dx \phi(x,\zeta_n)_n \phi(x,\zeta_n)_2$$
(A.7)

Similarly, we have

$$\det[\dot{\psi}(x,\zeta_n),\psi(x,\zeta_n)] = -i\dot{\lambda}_n 2 \int_x^\infty dx \psi(x,\zeta_1)_1 \psi(x,\zeta_n)_2$$
(A.8)

Introducing (A7) and (A8) into (A6), we finally obtain

$$\dot{a}(\zeta_n) = -ib_n \int_{-\infty}^{\infty} \psi_1(x,\zeta_n) \psi_2(x,\zeta_n) \, dx \tag{A.9}$$

From Equations (15) and (17), there is

$$\psi_1(x,\zeta_n) = -i\rho\zeta_n^{-1}\overline{\psi_2(x,\zeta_n)}$$
(A.10)

that is

$$\dot{a}(\zeta_n) = b_n \rho \zeta_n^{-1} \int_{-\infty}^{\infty} |\psi_2(x, \zeta_n)|^2 dx$$
(A.11)

Thus, we have

$$c_n \equiv -\frac{b_n}{\dot{a}(\zeta_n)\zeta_n} > 0. \tag{A.12}$$

REFERENCES

- Chen, X. J., Chen, Z. D., and Huang N. N. (1998). A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions. *Journal of Physics A: Mathematical and General* 31, 6929.
- Faddeev, L. D. and Takhtajan, L. A. (1987). Hamiltonian Methods in the Theory of Solitons, Springer, Berlin.
- Huang, N. N., Sien, C., and Chen, X. J. (1999). Foudation of direct perturbation method for dark solitons *Journal of Physics A: Mathematical and General* 32, 3939.
- Kaup, D. J. and Newell, A. C. (1978). Solitons as particles, oscillartors, and in slowly Changing media: A singular perturbation theory. *Proceedings of the Royal Society A* **361**, 413.

- Keener, J. P. and McLaughlin, D. W. (1977). A Green's function for a linear equation associated with solitons. *Journal of Mathematical Physics* **18**, 2008.
- Kivshar, Y. S. and Malomad, B. A. (1989). Solitons in nearly integrable systems. *Reviews of Modern Physics* 61, 763–915 and references therein.
- Zakharov, V. E. and Shabat, A. B. (1972). Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media. *Soviet Physics-JETP* 37, 364.
- Zakharov, V. E. and Shabat, A. B. (1973). Interaction between solitons in a stable medium. *Soviet Physics-JETP* **37**, 923–930.